Shoshin

Smart Contract Security Audit
CryptoFin - Bskt

April 22, 2018

Shoshin Group
shoshin.io

https://shoshin.io/

Shoshin

Disclaimer

This report is intended solely for discussion purposes. By reading this report or any part of it, you
agree to the terms of this disclaimer.

This report makes no statements, representations, or warranties about the use of the code, safety
of the code, its vulnerability status, the business model, its regulatory regime, or any other
statements about the fithess of the smart contract.

Shoshin Group assumes no responsibility for errors, omissions, or for damages resulting from the
use of the information contained within this report. You agree to indemnify and hold Shoshin
Group harmless for any losses resulting from the use of this report.

The results and outcome of this security audit are not intended to be, nor should they be
construed as, investment advice.

© Shoshin Group 1

Shoshin

Table of Contents

Disclaimer 1
Table of Contents 2
Engagement Details at a Glance 3
Smart Contract Details 3
Total Identified Vulnerabilities 3
Executive Summary 4
Scope 4
Findings 4
Recommendations 4
Engagement Details 5
Overview of the Bskt Token 5
Testing Plan and Methodology 6
Automated Testing 6
Manual Testing 6
Identified Security Vulnerabilities 7
Malicious ETH ERC20 wrapper can enable contract owner to withdraw funds 8
Potential for indefinitely locked tokens using tokensToSkip 9
Gas imposed limit on potential underlying tokens 10
Outdated and non-fixed Solidity compiler version in use within contract 1
Appendix A - Risk Description 12
Risk Rating 12
Risk Severity 12
Impact 12
Likelihood 12
Appendix B - Vulnerability Class Description 13
Appendix C - Malicious Contract Stealing ETH Exploit 15
EthToken.sol 15
BsktToken.test.js 16
Appendix D - Example Of Push Over Pull External Call 18
© Shoshin Group 2

Shoshin

Engagement Details at a Glance

Smart Contract Details

Organization CryptoFin

Product Ethereum10 - Bskt

Symbol bskt

Whitepaper https://github.com/cryptofinlabs/bskt-whitepaper
Source Code https://github.com/cryptofinlabs/bskt

Audited Git Commit 2acf674de41182e816db5522a3b23661f2703e08

Total Identified Vulnerabilities

High Low Informational

© Shoshin Group 3

https://github.com/cryptofinlabs/bskt-whitepaper
https://github.com/cryptofinlabs/bskt

Shoshin

Executive Summary

Shoshin Group (Shoshin) performed a security review of CryptoFin’s Bskt smart contract. The Bskt
smart contract is a tool that enables the bundling of ERC20 tokens, as defined by the contract
creator. To complete the security review, Shoshin was given access to CryptoFin’s GitHub
repository to review the smart contract source code, which is now open source.

Scope

The Solidity source code of the Bskt smart contract was reviewed. The usage and deployment of
the smart contract can also impact the overall security of the token, which was considered during
the review, but not a key focus.

Due to time constraints, differential analysis was performed, meaning previously-audited libraries
(OpenZeppelin token and Gnosis multisig contracts) were considered secure and out of scope for
this security review.

Findings

No critical security issues were identified in the Bskt smart contract. The code quality is good with
verbose comments and test coverage for all the code blocks.

The discovered exploitable aspects of the Bskt token are through its interactions with other
ERC20 tokens. In order to mint and burn Bskt tokens, iterations are made over a list of underlying
tokens to external transfer and transferFrom functions, which relies heavily on their
compliance with ERC20 standards. This behaviour is essential to Bskt token’s functionality,
however, leaves some potential attack vectors ranging from denial-of-service and in the extreme
case of malicious ETH tokenization - stolen funds.

The security issues identified and the attack vectors take advantage of poor or malicious
construction of Bskt tokens and are not intrinsic to the smart contract itself.

Recommendations

Shoshin recommends that CryptoFin take extra measures to provide documentation for Bskt
token creation, and an environment for Bskt token vetting and auditing. It is crucial for users of a
Bskt token to distinguish between trusted and malicious Bskts, and ERC20 compliance of the
underlying tokens.

To mitigate stolen funds through malicious ETH tokenization, remove the withdrawEther
function as it is not essential to the function of the Bskt token, and is what enables the attack
vector.

For redemption of the underlying tokens of a Bskt token unit, adopt a pull over push

implementation of redeem, which would reduce the risk of locked tokens and the potential for
denial-of-service either through block gas limits or paused tokens.

© Shoshin Group 4

Shoshin

Engagement Details

Overview of the Bskt Token

Bskt, is an Ethereum smart contract that allows users to compose any number of different
Ethereum (ERC20) tokens into a single Bskt token. Similar to an Exchange Traded Fund (ETF),
Bskt makes it easy and cost effective to hold a number of ERC20 token while owning only a
single token. However, unlike traditional ETFs, users maintain custody of the underlying assets.

(1 creation unit) Bskt instance

Bskt
instance
token

Create -

2001
Token A j

Bskt
instance
token

Redeem

The ERC20-compliant Bskt contract allows users to:

e instantiate a custom Bskt with a selected proportion of pre-specified underlying tokens
e create Bskt tokens in an exchange by surrendering the underlying tokens

e redeem Bskt tokens for the underlying tokens that make up the Bskt token

e transfer the ownership of Bskt tokens

The Bskt token uses out-of-the-box security constructs already provided in the OpenZeppelin' library
that it uses at its core.

" https://openzeppelin.org/api/docs/open-zeppelin.htmi

© Shoshin Group 5

https://openzeppelin.org/api/docs/open-zeppelin.html

Shoshin

Testing Plan and Methodology

As part of the testing process, Shoshin performed an architecture review of the Bskt token,
automated testing, as well as manual testing of the source code. Testing was started after
discussions with the CryptoFin team to understand the architecture and the use cases of the Bskt
token in addition to reviewing the whitepaper? describing the Bskt token.

Automated Testing

As a part of the automated testing process, Shoshin used various static analysis tools to ensure
that the Bskt smart contract code aligns with good security practices. Static analysis tools such as
Mythril®, Remix?, Solhint®, and SmartCheck® were used.

Manual Testing

During the manual testing process, Shoshin reviewed the vulnerabilities and warnings identified
by the tools used during the automated testing phase. Additionally, Shoshin also performed:

Integration Analysis - relating to the manner in which Bskt interacts with other contracts, and the
Ethereum blockchain.

Deployment procedure and feasibility

ERC20 adherence and interactions with other ERC20 contracts
Malicious users

Unintended state

Gas Analysis - relating to the ability of Bskt to serve its intended purpose given consideration to
network-imposed gas limits.

e FEconomically viable function use
e Denial-of-Service

2 https://github.com/cryptofinlabs/bskt-whitepaper/blob/master/bskt-whitepaper-v1.0.0.pdf
3 https://github.com/ConsenSys/mythril

* https://remix.ethereum.org/

5 https://github.com/protofire/solhint

8 https://github.com/smartdec/smartcheck

© Shoshin Group 6

https://github.com/cryptofinlabs/bskt-whitepaper/blob/master/bskt-whitepaper-v1.0.0.pdf
https://github.com/ConsenSys/mythril
https://remix.ethereum.org/
https://github.com/protofire/solhint
https://github.com/smartdec/smartcheck

|dentified Security Vulnerabilities

Title

Shoshin

Risk

Malicious ETH ERC20 wrapper can enable contract owner to withdraw funds
Potential for indefinitely locked tokens using tokensToSkip
Gas imposed limit on potential underlying tokens

Outdated, inconsistent, and non-fixed Solidity compiler version in use within
contracts

© Shoshin Group

High
Low
Informational

Informational

Shoshin

Malicious ETH ERC20 wrapper can enable contract owner to withdraw funds

Risk Severity: High Impact: High Likelihood: Medium

Vulnerability Class: Susceptibility to Malicious Contract Interaction, Call to the unknown

Vulnerability Location: https://github.com/cryptofinlabs/bskt/blob/2acf674de41182e816db5522a3b23661f2
703e08/contracts/BsktToken.sol#L230:L236 - withdrawEther ()

Description:

A malicious ERC20 token can be passed in as part of the addresses array during contract
construction that enables the owner to steal ETH from token creators and buyers.

The malicious ERC20 achieves this by ‘locking’ up deposited ETH to mint wrapper tokens,
and using internal state to facilitate approvals, transfers, and balance tracking. If the
transferFrom function of the wrapper is designed to transfer ETH instead of the wrapper
token, the owner can use withdrawEther to withdraw the ETH without knowledge or
approval of the buyer. Such a token can be advertised as an ETH wrapper to support ETH
exposure through the BsktToken token.

Depending on the implementation, this malicious token can also prevent the ability to fully
redeem a BsktToken token without using tokensToSkip.

Impact:

A malicious owner can use this functionality to trick buyers into creating BsktTokens that
are susceptible to having their ETH exposure siphoned by the owner. See Appendix C for a
sample exploit contract that wraps ETH to siphon funds without the buyers knowledge.

Recommendation:

The nature of approve and transferFrom of EIP20 paired with the intended behaviour
of BsktToken leave it susceptible to external implementations that may be malicious.

In this case, having a withdrawEther function does not serve core functionality and
increases the surface area of the contract’s functionality to exploitation. Our primary
recommendation is to remove this function.

A secondary recommendation is to apply the onlyOwner modifier to create such that only

the owner can create BsktToken tokens (anyone will still be able to redeem); however
this could impact the functionality of the contract and still leaves buyers vulnerable.

© Shoshin Group 8

https://github.com/cryptofinlabs/bskt/blob/2acf674de41182e816db5522a3b23661f2703e08/contracts/BsktToken.sol#L230:L236
https://github.com/cryptofinlabs/bskt/blob/2acf674de41182e816db5522a3b23661f2703e08/contracts/BsktToken.sol#L230:L236

Shoshin

Potential for indefinitely locked tokens using tokensToSkip

Risk Severity: Low Impact: Medium Likelihood: Low

Vulnerability Class: Denial-of-Service with revert

Vulnerability Location: https://github.com/cryptofinlabs/bskt/blob/2acf674de41182e816db5522a3b23661f2
703e08/contracts/BsktToken.sol#L124-L150 - redeem ()

Description:

Redemption of underlying tokens for a BsktToken is done by invoking redeem, which
requires synchronous iteration over the array tokens to invoke their respective transfer
functions. Since this is done synchronously, a failed transfer could result in all tokens being
locked, which sparks the need to have an input tokensToSkip.

Although tokensToSkip works as intended, it has the undesirable side effect that the
skipped tokens are locked indefinitely, even if an invocation of transfer at a future time
could be successful. It is interesting to note, however, that should the skipped token be
transferable at a future time, withdrawExcessToken would now enable the owner of the
BsktToken to withdraw said token.

Impact:

In a hypothetical situation where a BsktToken owner wishes to redeem at the inopportune
moment when an underlying token may be temporarily paused, the owner must
contemplate sacrificing access to the paused token completely.

Recommendation:

It is recommended to favor pull over push for external calls, especially when dealing with
payouts from a contract. That is, it is often better to isolate each external call into its own
transaction that can be initiated by the recipient of the call.

For redeem, it is recommended to burn the BsktToken but let users withdraw the funds
rather than push the funds to them automatically (and synchronously). This will require
storing an extra withdrawals state for each redeemer, for each of the underlying
tokens, along with implementation of a withdrawUnderlyingTokens public function.

This recommendation removes the need for tokensToSkip and enables the retrieval of

paused tokens by the redeemer, should they become unpaused at a later time. See
Appendix D for an example of pull over push implementations.

© Shoshin Group 9

https://github.com/cryptofinlabs/bskt/blob/2acf674de41182e816db5522a3b23661f2703e08/contracts/BsktToken.sol#L124-L150
https://github.com/cryptofinlabs/bskt/blob/2acf674de41182e816db5522a3b23661f2703e08/contracts/BsktToken.sol#L124-L150

Shoshin

Gas imposed limit on potential underlying tokens

Risk Severity: Informational Impact: Low Likelihood: Low

Vulnerability Class: Denial-of-Service with block gas limit

Vulnerability Location: https://github.com/cryptofinlabs/bskt/blob/2acf674de41182e816db5522a3b23661f2
703e08/contracts/BsktToken.sol#L98-L115 - create ()

Description:

Minting of BsktToken is done by invoking create, which requires synchronous iteration
over the array tokens that is populated on contract deployment. The BsktToken
constructor limits the array to be of length 255 or smaller, however the gas cost of create
could far exceed that, as it iterates through every element and invokes transferFrom on
each.

At an estimated gas cost of 105382 per element in the array, the current block limit of
8000000 will be reached well before the imposed limit of 255 tokens, denying the contract
to invoke create.

Impact:

The contract is unable to support the number of underlying tokens that is suggested by
reading the source code (inferred from array length restrictions).

Recommendation:

Although it is impossible to pragmatically check the complexity of the underlying token
implementation, it is recommended to limit the number of allowed underlying tokens to a
relatively safer value, such as 64.

© Shoshin Group 10

https://github.com/cryptofinlabs/bskt/blob/2acf674de41182e816db5522a3b23661f2703e08/contracts/BsktToken.sol#L98-L115
https://github.com/cryptofinlabs/bskt/blob/2acf674de41182e816db5522a3b23661f2703e08/contracts/BsktToken.sol#L98-L115

Shoshin

Outdated and non-fixed Solidity compiler version in use within contract

Risk Severity: Informational Impact: Low Likelihood: Low

Vulnerability Class: Compiler version not fixed

Vulnerability Location: https://github.com/cryptofinlabs/bskt/blob/2acf674de41182e816db5522a3b23661f2
703e08/contracts/BsktToken.sol#L1

Description:

The pragma versions used in each of the contracts resident in the Bskt Github repository
were different and outdated. Additionally, the use of the caret operator with the compiler
version indicates that the contract will always use the highest version of the compiler major
release currently available.

Impact:
Future compiler versions can result in unforeseen issues within the Bskt smart contract.

Recommendation:

Consider using the same, fixed, and up-to-date compiler version with the various contracts
as per best security practices. The latest version of the Solidity compiler is v 0.4.21.

© Shoshin Group 1l

https://github.com/cryptofinlabs/bskt/blob/2acf674de41182e816db5522a3b23661f2703e08/contracts/BsktToken.sol#L1
https://github.com/cryptofinlabs/bskt/blob/2acf674de41182e816db5522a3b23661f2703e08/contracts/BsktToken.sol#L1

Shoshin

Appendix A - Risk Description

Risk Rating

This Risk Rating used in the audit report is based of the Open Web Application Security Project
(OWASP) Risk Rating Methodology’.

Risk Severity
The overall Risk associated with a security vulnerability is calculated based of the formula:
Risk = Impact * Likelihood

Risk is based on various factors that are used to calculate Impact and Likelihood, such as the
threat agent involved, the vulnerability and attack used to exploit it, in conjunction with the impact
of a successful exploitation to the business. Risk Severity can be classified as per the table

below.
Overall Risk Severity
MEDIUM Low Medium High
Impact
LOW Informational Low Medium
LOW MEDIUM HIGH
Likelihood
Impact

The impact a bug would have on the business if exploited; calculated as per the OWASP Risk
Rating Methodology for estimating Impact.

Likelihood

The likelihood that the bug is encountered and exploited in the wild; calculated as per the
OWASP Risk Rating Methodology.

7 https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

© Shoshin Group 12

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

Shoshin

Appendix B - Vulnerability Class Description

ERC20 API violation

Reentrancy

Tx.origin - based
validation

Call to the unknown

Unchecked external
call

Gas-hungry fallback

Zero-balance
validation

Unlimited gas
allowance

Consider transfer
over send

Exception disorder

Timestamp
Dependence

© Shoshin Group

It is important for all tokens that claim to be an ERC20 to conform to its
standards, and to be wary of malicious implementation.

Contract state should never be relied on if untrusted contracts are
called. State changes after external calls should be avoided.

Asserting against to owner

impersonation.

tx.origin opens vulnerabilities

Primitives like call and send may unintendedly invoke callback
functions of the callee or recipient.

Calls to untrusted contracts can introduce several unexpected risks or
errors. External calls may execute malicious code in that contract or any
other contract that it depends upon.

Sending eth using send only provides 2300 gas for execution, which
can result in an out-of-gas exception.

Avoid relying on specific balance checks as wei can be forcibly sent to
any account.

call.value () without specifying a gasamount will forward all gas
for code execution.

send is the low-level counterpart of transfer and should be used
carefully.

The use of call and delegatecall in nested call stacks can lead to
unintended and exploitable contract state.

The timestamp of the block can be manipulated by the miner, and all
direct and indirect uses of the timestamp should be considered.

13

Transaction-Ordering
Dependence

DoS due to
(unexpected) throw

DoS due to block gas
limit

Inefficient byte array

Unchecked math

Unsafe type
inference

Implicit visibility level

Malicious libraries

Compiler version not

fixed

Style guide violation

© Shoshin Group

Shoshin

Transactions sitting in the mempool provide transparency into the order
of actions before they are included in a block, and are also subject to
manipulation.

Execution of a function call can be forcibly or mistakenly reverted,
preventing the contract to serve its intended function.

Execution of a function exceeds (or can be manipulated to exceed) the
block gas limit, resulting in unprocessable transactions.

It is possible to use an array of bytes as byte[], but it is wasting 31
bytes every element when passing in calls. It is better to use bytes.

Integer over- and under- flows are possible and undesirable.

Use of var automatically infers the type based on the first expression
assigned to the variable.

Functions are defaulted to public visibility if a visibility level is not
provided.

Use of libraries bring along risk of malicious or unintended behaviour if
not properly vetted and audited.

Locking the pragma limits the risk of surfacing undiscovered bugs
through the development and testing process.

Best practices should be followed for legibility, linting is encouraged.

14

Shoshin

Appendix C - Malicious Contract Stealing ETH Exploit

EthToken.sol

import "z ic en.sol";
import "z e
contract EthTc is
string public name = "EthToken";
string public symbol = "WETH";
uint8 public decimals = 0;
@dev
function EthToken () public {
totalSupply = 0;
}
@dev

function deposit () payable ({

balances[msg.sender] = balances[msg.sender].add(msg.value) ;
totalSupply = totalSupply .add(msg.value);

}
@dev
@param
@param

function transfer (address to, uint256 value) public returns (bool) {
require(value <= balances|[msg.sender]);
balances[msg.sender] = balances[msg.sender].sub(_value);
totalSupply = totalSupply .sub(msg.value);
_to.transfer (msg.value);
Transfer (msg.sender, _to, _value);

return true;

@dev

@param
@param
@param

function transferFrom(address from, address _to, uint256 value) public returns (bool)

require(value <= balances|[_ from]) ;
require(_value <= allowed[_ from] [msg.sender]);

balances[from] = balances[from].sub(value);

totalSupply = totalSupply .sub(value);

allowed[_ from] [msg.sender] = allowed[from] [msg.sender].sub(value);
_to.transfer (value);

Transfer (_from, _to, _value);

return true;

© Shoshin Group 15

Shoshin

BsktToken.test.js

P = require('bluebird’');

BsktToken = artifacts.require('BsktToken');

TokenA = artifacts.require('TokenA'");

TokenB = artifacts.require('TokenB"') ;

TokenC = artifacts.require('TokenC"') ;

EthToken = artifacts.require('EthToken');
assertRevert = require('./helpers/assertRevert.js');

BigNumber = web3.BigNumber;
TOKENS MULTIPLE = 100;

funct
let shouldSkip = false;
if (process.env.TEST ENV === 'e2e') {
shouldSkip = true;
}

on conditionallIt(title, test) {

return shouldSkip ? it.skip(title, test) : it(title, test);

}

contract ('BsktToken', function([owner, buyerl, buyer2, bskt20Buyer]) {
context ('With malicious Eth Wrapper token', function() {

let bsktToken, ethToken, tokenA;

beforeEach (async function () {
ethToken = await EthToken.new({ from: owner });
tokenA = await TokenA.new({ from: owner });
let underlyingTokensInstance = [ethToken, tokenA];

let tokenCountList = [web3.toWei(l, 'ether'), 21];

let creationUnit = 2;

bsktToken = await BsktToken.new(
underlyingTokensInstance.map (token => token.address),
tokenCountList,
creationUnit,
'Basket',
'BSK',
{from: owner}

)i
const TOKEN GRAIN MULTIPLE = TOKENS MULTIPLE / creationUnit;

await ethToken.deposit ({from: buyerl, gas: 3000000, value: TOKEN GRAIN MULTIPLE *
tokenCountList[0]}) ;
await tokenA.transfer (buyerl, TOKEN GRAIN MULTIPLE * tokenCountList[1]);

for (let i = 0; i < underlyingTokensInstance.length; i++) {
await underlyingTokensInstance[i].approve (
bsktToken.address,
TOKEN_GRAIN_MULTIPLE * tokenCountList[i],
{from: buyerl}
)i

}) i
conditionalIt('will permit the bskt owner to withdraw funds', async function test () {

1st preCreationEthTokenBalance = await ethToken.balanceOf.call (buyerl) ;
st preCreationTokenABalance = await tokenA.balanceOf.call (buyerl);

1

© Shoshin Group 16

Shoshin

await bsktToken.create (100, {from: buyerl});

postCreationEthTokenBalance = await ethToken.balanceOf.call (buyerl);
postCreationTokenABalance = await tokenA.balanceOf.call (buyerl);
ownerBalanceStart = await web3.eth.getBalance (owner) ;

bsktTokenBalanceStart = await web3.eth.getBalance (bsktToken.address) ;
await bsktToken.withdrawEther () ;

ownerBalanceEnd = await web3.eth.getBalance (owner) ;
bsktTokenBalanceEnd = await web3.eth.getBalance (bsktToken.address) ;

assert.equal (preCreationEthTokenBalance, web3.toWei (50, 'ether')):;
assert.equal (preCreationTokenABalance, 100);

assert.equal (postCreationEthTokenBalance, O0);
assert.equal (postCreationTokenABalance, 0);

assert.equal (bsktTokenBalanceStart, web3.toWei (50, 'ether'));
assert.equal (bsktTokenBalanceEnd, 0);

assert.isAbove (ownerBalanceEnd.toNumber (), ownerBalanceStart.toNumber())

© Shoshin Group 17

Shoshin

Appendix D - Example Of Push Over Pull External Call

See the code below for an example of a push over pull implementation, referenced from
Consensys®,

contract auction {
address highestBidder;
uint highestBid;

function bid() payable {
require (msg.value >= highestBid);

if (highestBidder '= 0) {
highestBidder.transfer (highestBid) ;

highestBidder = msg.sender;
highestBid = msg.value;

contract auction {
address highestBidder;
uint highestBid;
mapping (address => uint) refunds;

function bid() payable external {
require (msg.value >= highestBid);

if (highestBidder '= 0) {
refunds[highestBidder] += highestBid;

highestBidder = msg.sender;
highestBid = msg.value;

function withdrawRefund () external {
uint refund = refunds[msg.sender];
refunds[msg.sender] = 0;

msg.sender.transfer (refund) ;

8 https://consensys.github.io/smart-contract-best-practices/recommendations

© Shoshin Group

18

https://consensys.github.io/smart-contract-best-practices/recommendations

